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Some intuition...

”PDMP are continuous-time processes that evolve deterministically
between a countable set of random event times”.
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Definition

Definition
A Piecewise-Deterministic Markov Process is a continuous-time stochastic pro-
cess whose dynamics involve random events with deterministic dynamics between
events and random transition at events {Zt : t ≥ 0}. These dynamics are defined
through the specification of three quantities:

1 The deterministic dynamics:

dZ
(i)
t

dt
= ϕi(Zt)

2 The event rate: events occur singularly at a rate λ(zt) that depends on the
current state.

3 Transition kernel: at any event time τ :

zτ ∼ q(·|zτ−)

for some probability distribution.
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Why PDMPs

1 Continuity: well suited for Big Data, allows to target the posterior
exactly even when subsampling.

2 Non-reversibility: speeds up convergence to invariant distribution.

3 Designability: generic schemes exist to fairly easily design desirable
PDMPs.
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Generator

Definition

Generator of a continuous-time stochastic process is an operator on
functions with existing limit on the state-space:

Af(z) = ĺım
δ→0

E[f(Zt+δ)|Zt]− f(z)

δ

Proposition

dE(f(Zt))

dt
= E(A(f(Zt))

Theorem (Davies 1984)

For a Piece-wise Deterministic Process:

Af(x) = ϕ(z) · ∇f(z) + λ(z) ·
∫
q(z

′ |z) · [f(z′
)− f(z)]dz

′
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Adjoint

Definition

The adjoint operator of the generator may be defined as the operator A∗

such that ∫
g(z)Af(z)dz =

∫
f(z)A∗g(z)dz

Proposition (Fokker-Plank Equation)

Let pt(z) the PDF of Zt, then

∂pt(z)

∂t
= A∗pt(z)

Proposition

The adjoint operator of the generator of a PDMP can be written as:

A∗g(z) = −
d∑

i=1

∂(ϕi(z) · g(z))
∂zi

+

∫
g(z

′
)λ(z

′
)q(z|z′

)dz
′ − g(z)λ(z)
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Invariance

Using the Fokker-Plank equation, a probability distribution π(z) is the in-
variant distribution of a PDMP if an only if

A∗π(z) = 0

Putting all together:

Corollary

π(z) is the invariant distribution of a PDMP if and only if:

−
d∑

i=1

∂(ϕi(z) · π(z))
∂zi

+

∫
π(z

′
)λ(z

′
)q(z|z′

)dz
′ − π(z)λ(z) = 0 (1)
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Data Augmentation

Most common approach is to consider Zt = (Xt, Vt) and choose the
dynamics so that our distribution of interest π(x) is the marginal distribution
of X in the invariant distribution.

1 Choose some dynamics:

dxi

dt
= vit ;

dvit
dt

= 0 (2)

2 Compute the rates and the kernel so that (1) is satisfied.
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Choosing rates and kernel

Under regular assumptions, (1) can be re-written as:

p(v)·λ(x, v)−
∫
λ(x, v

′
)·q(v|x, v′

)·p(v′
)dv

′
= −p(v)·v ·∇xlog(π(x))

(3)

Integrating both sides with respect to v yields:

∇xlog(π(x)) · E(V ) = 0 ∀x⇒ E(V ) = 0

A flip operator Fx is therefore defined, satisfying Fx(Fx(v)) = v and
defining the transition kernel as a Dirac delta mass centred at
v
′
= Fx(v)
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Choosing rates and kernel

Including this latter condition, (3) becomes:

λ(x, v)− λ(x, v
′
) = −v · ∇xlog(π(x)) (4)

The smallest rates compatible with (4) can be shown to be

λ(x, v) = max{0,−v · ∇xlog(π(x))}

and are known as canonical rates.

Example

The Boomerang Sampler is defined by

Fx(v) = v − 2 · v · ∇xlog(π(x))

∇xlog(π(x)) · ∇xlog(π(x))
· ∇xlog(π(x))

The Zig-Zag sampler flips instead one component of the velocity at a
time.
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Simulating from a PDMP

Using the defining quantities:

1 Given Zt, simulate the next event time τ

2 Calculate the state immediately before the event time
zτ− = ψ(zt, τ − t)

3 Draw the new value immediately after the event: zτ ∼ q(·|zτ−)
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The non-homogeneous Poisson Process

Note that the rates:

λ(zt+s) = λ(ψ(zt, s)) = λ̃zt(s)

and thus can be analytically defined by a function of time starting at each
event time. They change at each time t considered (which, recall it is con-
sidered over a continuous domain).

1 Event times can be simulated as arrival times of a Poisson Process
with rates λ̃zt(s).

2 It is unclear how we can do that (and complicated) in general. Such
Poisson Process is Non-Homogeneous and rates change continuously.
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Difficulties

1 ”Heisenberg Uncertainty Principle” is not possible to simultaneously
observe the current state and whether or not an event has occurred.

2 Recall the canonical rates derived
λ(x, v) = max{0,−v · ∇xlog(π(x))}. In the Bayesian Big Data
setting, when using a subsample to estimate the gradient, λ becomes
a random variable. We face here the challenge of simulating from a
Doubly-Stochastic or Cox process.
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Main methods to simulate event times

If Λ(t) =
∫ t
0 λ(u)du can be computed in a closed form, the following

result can be used.

Theorem (Cinlar)

T1, ..., Tn are arrival times of a Poisson Process with intensity function λ(t)
if and only if Λ(T1), ...,Λ(Tn) are arrivals of a Poisson Process with rate 1.

For n = 1, ...
1 Compute Λ(t) =

∫ t

0
λ̃zτn−1

(u)du.
2 Simulate T ∼ Exp(1)
3 Find τn such that Λ(τn) = T

Then τ1, ..., τn are event times.
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Main methods to simulate event times

If λ̃zt(s) cannot be integrated but instead it can be upper bounded
along the domain: λ̃zt(s) < λ+ then another result regarding the
thinning property of Poisson Processes may be used:

Theorem (Lewis and Shedler 1979)

If t0 is an arrival time of a Poisson Process with rate λ+ then, it is also an
arrival time of a coupled Poisson Process of rate λ̃zt(s) with probability
λ̃zt (t0)

λ+

Note that the tighter the bound the more efficient the sampling will
be.
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Main methods to simulate event times

Most common approach: combination of both.

1 Choose a simple function (commonly linear or piece-wisely linear)
λ+(t) that upper bounds the rates.

2 Use Cinlar’s Theorem to simulate arrivals from the upper bound
non-homogeneous process.

3 Use the Thinning Theorem to simulate event times from out PDMP.
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More shophisticated methods

1 For the doubly-stochastic process that arises in Bayesian inference
for big data: use some available statistical model to estimate the
rates. Note that in such cases the rates:

λ(z) = max0,−v · ∇x

[
log(f(x)) +

N∑
i=1

log(p(yi|x))

]

when using subsampling become a random quantity:

λ̂(z) = max0,−v · ∇x

[
log(f(x)) +

N

n

n∑
i=1

log(p(yri |x))

]
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Example: Regression

Example (Pacman et al. 2014)

Model the rates using Linear Regression on previous steps:

λ̂i = β1ti + β0 + ϵti

where ti represent the previous observed event times.

Then compute a confidence band [λ̃L, λ̃U ] for a given probability and
use λ̃U as an upper bound to apply the combination of the first two
methods.

However this comes at a cost: it is not an almost sure upper band
and introduces bias (recall unbiasedness was one of the reasons
underlying the whole construction).
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Main Samplers

1 Bouncy Particle Sampler

2 Zig-Zag Sampler

3 Boomerang Sampler

4 Illustration of the samplers
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