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Some intuition...

@ "PDMP are continuous-time processes that evolve deterministically
between a countable set of random event times”.
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Definition

Definition
A Piecewise-Deterministic Markov Process is a continuous-time stochastic pro-
cess whose dynamics involve random events with deterministic dynamics between

events and random transition at events {Z; : t > 0}. These dynamics are defined
through the specification of three quantities:

@ The deterministic dynamics:

dz"
dt

= ¢i(Zy)

@ The event rate: events occur singularly at a rate \(z;) that depends on the
current state.

© Transition kernel: at any event time 7:

2~ a(|z-)

for some probability distribution.
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Why PDMPs

© Continuity: well suited for Big Data, allows to target the posterior
exactly even when subsampling.
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Why PDMPs

© Continuity: well suited for Big Data, allows to target the posterior
exactly even when subsampling.

@ Non-reversibility: speeds up convergence to invariant distribution.

© Designability: generic schemes exist to fairly easily design desirable
PDMPs.

7/21



Index

© Mathematical tools

8/27



Generator

Definition
Generator of a continuous-time stochastic process is an operator on
functions with existing limit on the state-space:

lim E[f(Zt+6)1Zt] — f(2)

Af(z) - 0—0 )
Proposition
B _ gap(z)

Theorem (Davies 1984)

For a Piece-wise Deterministic Process:

Af (@) = ¢(2) - Vf(2) + A(2) - /Q(ZIIZ) (@) - f(2)ldZ
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Adjoint

Definition

The adjoint operator of the generator may be defined as the operator A*
such that

[ @A)z = [ 1:)4°g(2)a
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Adjoint
Definition

The adjoint operator of the generator may be defined as the operator A*
such that

[ @A)z = [ 1:)4°g(2)a

Proposition (Fokker-Plank Equation)
Let pi(z) the PDF of Z;, then

Ope(2)
ot

= A"pi(2)

Proposition

The adjoint operator of the generator of a PDMP can be written as:

=1

wrg(e) = =3 AEDIED | o3 a(al s~ gl 2)

v
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Invariance

Using the Fokker-Plank equation, a probability distribution 7(2) is the in-
variant distribution of a PDMP if an only if

A*m(z) =0
Putting all together:

Corollary
7(2) is the invariant distribution of a PDMP if and only if:

d i(2) - 7(z N N
_ ZW +/7T(z IA(2)a(zl2)dz — m(2)A(z) =0 (1)

p=ll
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Data Augmentation

Most common approach is to consider Z; = (X;,V;) and choose the
dynamics so that our distribution of interest 7(z) is the marginal distribution
of X in the invariant distribution.

@ Choose some dynamics:

da’ , dvl
3 . _ 2
a bt 0 2)

@ Compute the rates and the kernel so that (1) is satisfied.
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Choosing rates and kernel

@ Under regular assumptions, (1) can be re-written as:

!

p(v)'A(Sﬂ,v)//\(%v/)-q(vlﬂf,v')'p(v Jdv' = —p(v)-v-Vlog(n(z))

@ Integrating both sides with respect to v yields:
Vilog(m(z))-E(V)=0 Ve= EWV)=0
o A flip operator F) is therefore defined, satisfying F,(F,(v)) = v and

defining the transition kernel as a Dirac delta mass centred at
v = Fy(v)
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Choosing rates and kernel

@ Including this latter condition, (3) becomes:
Az, v) — Ma,v') = —v - Vilog(w(z)) (4)
@ The smallest rates compatible with (4) can be shown to be
Az, v) = maz{0, —v - Vzlog(m(x))}
and are known as canonical rates.
Example
The Boomerang Sampler is defined by

. v - Vxlog(ﬂ'(ﬁﬂ))
Vilog(m(x)) - Vilog(m(x))

F,(v)=v—2 - Valog(m(x))

The Zig-Zag sampler flips instead one component of the velocity at a
time.
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Simulating from a PDMP

Using the defining quantities:

@ Given Z;, simulate the next event time 7
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Simulating from a PDMP

Using the defining quantities:
@ Given Z;, simulate the next event time 7

@ Calculate the state immediately before the event time
2 =P(z, 7 — 1)
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Simulating from a PDMP

Using the defining quantities:
@ Given Z;, simulate the next event time 7
@ Calculate the state immediately before the event time
Zr- =Y(2, T — t)
© Draw the new value immediately after the event: z, ~ ¢(+|2,-)
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The non-homogeneous Poisson Process

Note that the rates:
)\(Zt+s) = A(¢(Zta 5)) = 5\Zt (S)

and thus can be analytically defined by a function of time starting at each
event time. They change at each time t considered (which, recall it is con-
sidered over a continuous domain).
© Event times can be simulated as arrival times of a Poisson Process
with rates A, (s).
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The non-homogeneous Poisson Process

Note that the rates:
Mztrs) = AMY(2,8)) = 5\,%(3)

and thus can be analytically defined by a function of time starting at each
event time. They change at each time t considered (which, recall it is con-
sidered over a continuous domain).
© Event times can be simulated as arrival times of a Poisson Process
with rates A, (s).
@ It is unclear how we can do that (and complicated) in general. Such
Poisson Process is Non-Homogeneous and rates change continuously.
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Difficulties

© "Heisenberg Uncertainty Principle” is not possible to simultaneously
observe the current state and whether or not an event has occurred.
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Difficulties

© "Heisenberg Uncertainty Principle” is not possible to simultaneously
observe the current state and whether or not an event has occurred.

@ Recall the canonical rates derived
Az, v) = maz{0, —v - Vzlog(m(x))}. In the Bayesian Big Data
setting, when using a subsample to estimate the gradient, A becomes
a random variable. We face here the challenge of simulating from a
Doubly-Stochastic or Cox process.
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Main methods to simulate event times

o If A(t fo u)du can be computed in a closed form, the following
result can be used

Theorem (Cinlar)

Ty, ..., T, are arrival times of a Poisson Process with intensity function \(t)
if and only if A(T}), ..., A(T},) are arrivals of a Poisson Process with rate 1.

Forn=1,.

(1) Compute A(t fo iy du.
© Simulate T' ~ Exp( )
© Find 7, such that A(7,) =T

Then 71, ..., 7, are event times.
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Main methods to simulate event times

o If A, (s) cannot be integrated but instead it can be upper bounded
along the domain: A, (s) < AT then another result regarding the
thinning property of Poisson Processes may be used:

Theorem (Lewis and Shedler 1979)

If to is an arrival time of a Poisson Process with rate \* then, it is also an

arrival time of a coupled Poisson Process of rate ., (s) with probability
S\Zt (tO)
AT

Note that the tighter the bound the more efficient the sampling will
be.
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Main methods to simulate event times

Most common approach: combination of both.

© Choose a simple function (commonly linear or piece-wisely linear)
AT (t) that upper bounds the rates.
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Main methods to simulate event times

Most common approach: combination of both.

© Choose a simple function (commonly linear or piece-wisely linear)
AT (t) that upper bounds the rates.

@ Use Cinlar's Theorem to simulate arrivals from the upper bound
non-homogeneous process.

© Use the Thinning Theorem to simulate event times from out PDMP.
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More shophisticated methods

@ For the doubly-stochastic process that arises in Bayesian inference
for big data: use some available statistical model to estimate the
rates. Note that in such cases the rates:

N
log(f(x)) + ) log(p(yilx))]
=1

when using subsampling become a random quantity:

log(f Zlog (yr,|) ]

A(z) = maz0, —v - V,

A(z) = maz0, —v - V,
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Example: Regression

Example (Pacman et al. 2014)

@ Model the rates using Linear Regression on previous steps:
Ai = Piti + Bo + €,

where t; represent the previous observed event times.

e Then compute a confidence band [S\L, S\U] for a given probability and
use Ay as an upper bound to apply the combination of the first two
methods.

@ However this comes at a cost: it is not an almost sure upper band
and introduces bias (recall unbiasedness was one of the reasons
underlying the whole construction).

25/27



Index

@ PDMP Samplers

26 /27



Main Samplers

© Bouncy Particle Sampler
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© Bouncy Particle Sampler
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27 /27



Main Samplers

© Bouncy Particle Sampler
@ Zig-Zag Sampler
© Boomerang Sampler

@ lllustration of the samplers
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